Advertisements
Advertisements
प्रश्न
`1/(sqrt(9) - sqrt(8))` is equal to ______.
विकल्प
`1/2(3 - 2sqrt(2))`
`1/(3 + 2sqrt(2)`
`3 - 2sqrt(2)`
`3 + 2sqrt(2)`
उत्तर
`1/(sqrt(9) - sqrt(8))` is equal to `underlinebb(3 + 2sqrt(2))`.
Explanation:
`1/(sqrt(9) - sqrt(8)) = 1/(3 - 2sqrt(2))`
= `1/(3 - 2sqrt(2)) * (3 + 2sqrt(2))/(3 + 2sqrt(2))` ...`[∵ sqrt(8) = sqrt(2 xx 2 xx 2) = 2sqrt(2)]`
= `(3 + 2sqrt(2))/(9 - (2sqrt(2))^2` ...[Multiplying numerator and denominator by `3 + 2sqrt(2)`]
= `(3 + 2sqrt(2))/(9 - (2sqrt(2))^2` ...[Using identity (a – b)(a + b) = a2 – b2]
= `(3 + 2sqrt(2))/(9 - 8)`
= `3 + 2sqrt(2)`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(4 + sqrt7)(3 + sqrt2)`
Simplify the following expressions:
`(2sqrt5 + 3sqrt2)^2`
Rationalise the denominator of the following:
`3/(2sqrt5)`
Rationalise the denominator of each of the following
`1/sqrt12`
In the following determine rational numbers a and b:
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) = a - bsqrt77`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(1 + sqrt2)/(3 - 2sqrt2)`
Simplify the following:
`(sqrt(3) - sqrt(2))^2`
Find the value of a and b in the following:
`(3 - sqrt(5))/(3 + 2sqrt(5)) = asqrt(5) - 19/11`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`1/(sqrt(3) + sqrt(2))`
Simplify:
`(1/27)^((-2)/3)`