Advertisements
Advertisements
प्रश्न
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(1 + sqrt2)/(3 - 2sqrt2)`
उत्तर
We know that rationalization factor for `3 - 2sqrt2` is `3 + 2sqrt2`. We will multiply numerator and denominator of the given expression `(1 + sqrt2)/(3 - 2sqrt2)` by `3 + 2sqrt2` to get
`(1 + sqrt2)/(3 - 2sqrt2) xx (3 + 2sqrt2)/(3 + 2sqrt2) = (3 + 2 xx sqrt2 + 3 xx sqrt2 + 2 xx (sqrt2)^2)/((3)^2 - (2sqrt2)^2)`
`= (3 + 2sqrt2 + 3sqrt2 + 4)/(9 - 8)`
`= (7 + 5sqrt2)/1`
Putting te value of `sqrt2` we get
`7 + 5sqrt2 = 7 + 5(1.4142)`
= 7 + 7.071
= 14.071
Hence the given expression is simplified to 14.071
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(sqrt8 - sqrt2)(sqrt8 + sqrt2)`
Rationalise the denominator of each of the following
`3/sqrt5`
Rationalise the denominator of the following
`(sqrt3 + 1)/sqrt2`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`3/sqrt10`
Simplify:
`(5 + sqrt3)/(5 - sqrt3) + (5 - sqrt3)/(5 + sqrt3)`
If x= \[\sqrt{2} - 1\], then write the value of \[\frac{1}{x} . \]
Simplify the following expression:
`(3+sqrt3)(3-sqrt3)`
`1/(sqrt(9) - sqrt(8))` is equal to ______.
Simplify the following:
`4sqrt(28) ÷ 3sqrt(7) ÷ root(3)(7)`
Rationalise the denominator of the following:
`(2 + sqrt(3))/(2 - sqrt(3))`