Advertisements
Advertisements
प्रश्न
Rationalise the denominator of the following
`(sqrt3 + 1)/sqrt2`
उत्तर
We know that rationalization factor for `1/sqrta` is `sqrta`.We will multiply numerator and denominator of the given expression `(sqrt3 + 1)/sqrt2` by `sqrt2` to get
`(sqrt3 + 1)/sqrt2 xx sqrt2/sqrt2 = (sqrt2 xx sqrt3 + sqrt2)/(sqrt2 xx sqrt2)`
`= (sqrt6 + sqrt2)/2`
Hence the given expression is simplified to `(sqrt6 + sqrt2)/2`
APPEARS IN
संबंधित प्रश्न
Simplify the following expression:
`(sqrt5 - sqrt2)(sqrt5 + sqrt2)`
Rationales the denominator and simplify:
`(2sqrt6 - sqrt5)/(3sqrt5 - 2sqrt6)`
In the following determine rational numbers a and b:
`(sqrt3 - 1)/(sqrt3 + 1) = a - bsqrt3`
If \[x = 2 + \sqrt{3}\] , find the value of \[x + \frac{1}{x}\].
If x = \[\sqrt{5} + 2\],then \[x - \frac{1}{x}\] equals
Simplify the following expression:
`(sqrt5-sqrt2)(sqrt5+sqrt2)`
After rationalising the denominator of `7/(3sqrt(3) - 2sqrt(2))`, we get the denominator as ______.
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Simplify the following:
`3/sqrt(8) + 1/sqrt(2)`
Simplify the following:
`(2sqrt(3))/3 - sqrt(3)/6`