Advertisements
Advertisements
प्रश्न
If \[x = 2 + \sqrt{3}\] , find the value of \[x + \frac{1}{x}\].
उत्तर
Given that, `x= 2+sqrt3` hence
\[\frac{1}{x}\] is given as
. `1/x = 1/(2+sqrt3)`We are asked to find `x +1/x `
We know that rationalization factor for `2+sqrt3` is`2-sqrt3` . We will multiply each side of the given expression `1/(2+sqrt3)` by, `2-sqrt3` to get
. `1/x = 1/(2+sqrt3) xx(2-sqrt3)/(2-sqrt3)`
`= (2-sqrt3)/((2)^2-(sqrt3)^2)`
`= (2-sqrt3)/(4-3)`
`=2-sqrt3`
Therefore,
`x+1/x = 2+sqrt3 +2 - sqrt3`
`=4`
Hence value of the given expression is 4 .
APPEARS IN
संबंधित प्रश्न
Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter (say d). That is, π = `c/d`. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?
Rationalise the denominator of each of the following
`3/sqrt5`
Express the following with rational denominator:
`30/(5sqrt3 - 3sqrt5)`
Write the value of \[\left( 2 + \sqrt{3} \right) \left( 2 - \sqrt{3} \right) .\]
Simplify \[\sqrt{3 + 2\sqrt{2}}\].
Rationalise the denominator of the following:
`2/(3sqrt(3)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`4/sqrt(3)`
Simplify:
`(8^(1/3) xx 16^(1/3))/(32^(-1/3))`
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`
If `sqrt(2) = 1.414, sqrt(3) = 1.732`, then find the value of `4/(3sqrt(3) - 2sqrt(2)) + 3/(3sqrt(3) + 2sqrt(2))`.