Advertisements
Advertisements
प्रश्न
Write the rationalisation factor of \[\sqrt{5} - 2\].
उत्तर
Given that,`sqrt5 - 2` we know that rationalization factor of `sqrta - b` is `sqrta + b`
So the rationalization factor of `sqrt5 - 2`is `sqrt5 +2`.
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(sqrt5 - 2)(sqrt3 - sqrt5)`
Express the following with rational denominator:
`(3sqrt2 + 1)/(2sqrt5 - 3)`
Rationales the denominator and simplify:
`(5 + 2sqrt3)/(7 + 4sqrt3)`
Simplify:
`2/(sqrt5 + sqrt3) + 1/(sqrt3 + sqrt2) - 3/(sqrt5 + sqrt2)`
In the following determine rational numbers a and b:
`(3 + sqrt2)/(3 - sqrt2) = a + bsqrt2`
In the following determine rational numbers a and b:
`(4 + 3sqrt5)/(4 - 3sqrt5) = a + bsqrt5`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(3 - sqrt5)/(3 + 2sqrt5)`
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
Value of `root(4)((81)^-2)` is ______.
Simplify the following:
`4sqrt12 xx 7sqrt6`