Advertisements
Advertisements
प्रश्न
In the following determine rational numbers a and b:
`(4 + 3sqrt5)/(4 - 3sqrt5) = a + bsqrt5`
उत्तर
We know that rationalization factor for `4 - 3sqrt5` is `4 + 3sqrt5`. We will multiply numerator and denominator of the given expression `(4 + 3sqrt5)/(3 - 3sqrt5)` by `4 + 3sqrt5` to get
`(4 + 3sqrt5)/(4 - 3sqrt5) xx (4 + 3sqrt5)/(4 + 3sqrt5) = ((4)^2 + (3sqrt3)^2 + 2 xx 4 xx 3sqrt5)/((4)^2 - (3sqrt5)^2)`
`= (16 + 45 + 24sqrt5)/(16 - 45)`
`= (61 + 24sqrt5)/(-29)`
`= -61/29 - 24/29 sqrt5`
On equating rational and irrational terms, we get
`a + bsqrt5 = -61/29 - 24/29 sqrt5`
Hence we get `a = -61/29, b = -24/29`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(3 + sqrt3)(3 - sqrt3)`
Simplify the following expression:
`(sqrt5 - sqrt2)(sqrt5 + sqrt2)`
Express the following with rational denominator:
`16/(sqrt41 - 5)`
Express the following with rational denominator:
`(sqrt3 + 1)/(2sqrt2 - sqrt3)`
Find the value of `6/(sqrt5 - sqrt3)` it being given that `sqrt3 = 1.732` and `sqrt5 = 2.236`
Classify the following number as rational or irrational:
`(2sqrt7)/(7sqrt7)`
Rationalise the denominator of the following:
`(sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))`
Rationalise the denominator of the following:
`(3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3))`
Find the value of a and b in the following:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = a - 6sqrt(3)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`(sqrt(10) - sqrt(5))/2`