Advertisements
Advertisements
प्रश्न
In the following determine rational numbers a and b:
`(4 + 3sqrt5)/(4 - 3sqrt5) = a + bsqrt5`
उत्तर
We know that rationalization factor for `4 - 3sqrt5` is `4 + 3sqrt5`. We will multiply numerator and denominator of the given expression `(4 + 3sqrt5)/(3 - 3sqrt5)` by `4 + 3sqrt5` to get
`(4 + 3sqrt5)/(4 - 3sqrt5) xx (4 + 3sqrt5)/(4 + 3sqrt5) = ((4)^2 + (3sqrt3)^2 + 2 xx 4 xx 3sqrt5)/((4)^2 - (3sqrt5)^2)`
`= (16 + 45 + 24sqrt5)/(16 - 45)`
`= (61 + 24sqrt5)/(-29)`
`= -61/29 - 24/29 sqrt5`
On equating rational and irrational terms, we get
`a + bsqrt5 = -61/29 - 24/29 sqrt5`
Hence we get `a = -61/29, b = -24/29`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(4 + sqrt7)(3 + sqrt2)`
Simplify the following expressions:
`(2sqrt5 + 3sqrt2)^2`
Rationalise the denominator of each of the following
`1/sqrt12`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`3/sqrt10`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(sqrt5 + 1)/sqrt2`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
if `x = 2 + sqrt3`,find the value of `x^2 + 1/x^2`
Simplify the following expression:
`(3+sqrt3)(3-sqrt3)`
Rationalise the denominator of the following:
`1/(sqrt5+sqrt2)`
Rationalise the denominator of the following:
`sqrt(40)/sqrt(3)`