Advertisements
Advertisements
प्रश्न
Rationalise the denominator of the following:
`1/(sqrt5+sqrt2)`
उत्तर
The given number is `1/(sqrt5 + sqrt2)`
On rationalising the denominator,
⇒ `1/(sqrt5 + sqrt2) = 1/(sqrt5 + sqrt2) xx (sqrt5 - sqrt2)/(sqrt5 - sqrt2)`
We know that (a + b) (a - b) = a2 - b2
⇒ `1/(sqrt5 + sqrt2) = (sqrt5 - sqrt2)/((sqrt5)^2 - (sqrt2)^2)`
⇒ `1/(sqrt5 + sqrt2) = (sqrt5 - sqrt2)/(5 - 2)`
∴ `1/(sqrt5 + sqrt2) = (sqrt5 - sqrt2)/3`
APPEARS IN
संबंधित प्रश्न
Recall, π is defined as the ratio of the circumference (say c) of a circle to its diameter (say d). That is, π = `c/d`. This seems to contradict the fact that π is irrational. How will you resolve this contradiction?
Express the following with rational denominator:
`(6 - 4sqrt2)/(6 + 4sqrt2)`
Rationales the denominator and simplify:
`(5 + 2sqrt3)/(7 + 4sqrt3)`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
if `x = (sqrt3 + 1)/2` find the value of `4x^2 +2x^2 - 8x + 7`
`1/(sqrt(9) - sqrt(8))` is equal to ______.
Value of `root(4)((81)^-2)` is ______.
Simplify the following:
`3/sqrt(8) + 1/sqrt(2)`
If `sqrt(2) = 1.414, sqrt(3) = 1.732`, then find the value of `4/(3sqrt(3) - 2sqrt(2)) + 3/(3sqrt(3) + 2sqrt(2))`.
If `a = (3 + sqrt(5))/2`, then find the value of `a^2 + 1/a^2`.