Advertisements
Advertisements
प्रश्न
If `a = (3 + sqrt(5))/2`, then find the value of `a^2 + 1/a^2`.
उत्तर
Given: `a = (3 + sqrt(5))/2`
The value of a2 will be `a^2 = ((3 + sqrt(5))/2)^2`
= `(9 + 5 + 6sqrt(5))/4`
= `(14 + 6sqrt(5))/4`
= `(7 + 3sqrt(5))/2`
Now, `1/a^2 = 2/(7 + 3sqrt(5))`
= `2/(7 + 3sqrt(5)) xx (7 - 3sqrt(5))/(7 - 3sqrt(5))`
= `(2(7 - 3sqrt(5)))/(7^2 - (3sqrt(5))^2`
= `(2(7 - 3sqrt(5)))/(49 - 45)`
= `(2(7 - 3sqrt(5)))/4`
= `(7 - 3sqrt(5))/2`
The value of `a^2 + 1/a^2` is
`a^2 + 1/a^2 = (7 + 3sqrt(5))/2 + (7 - 3sqrt(5))/2`
= `(7 + 3sqrt(5) + 7 - 3sqrt(5))/2`
= `14/2`
= 7
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(11 + sqrt11)(11 - sqrt11)`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`3/sqrt10`
In the following determine rational numbers a and b:
`(5 + 3sqrt3)/(7 + 4sqrt3) = a + bsqrt3`
Simplify: \[\frac{7 + 3\sqrt{5}}{3 + \sqrt{5}} - \frac{7 - 3\sqrt{5}}{3 - \sqrt{5}}\]
Simplify the following expression:
`(sqrt5-sqrt2)(sqrt5+sqrt2)`
After rationalising the denominator of `7/(3sqrt(3) - 2sqrt(2))`, we get the denominator as ______.
`root(4)root(3)(2^2)` equals to ______.
Find the value of a and b in the following:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = a + 7/11 sqrt(5)b`
Simplify:
`(8^(1/3) xx 16^(1/3))/(32^(-1/3))`
If `sqrt(2) = 1.414, sqrt(3) = 1.732`, then find the value of `4/(3sqrt(3) - 2sqrt(2)) + 3/(3sqrt(3) + 2sqrt(2))`.