Advertisements
Advertisements
प्रश्न
If `x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` and `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))`, then find the value of x2 + y2.
उत्तर
`x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2))` and `y = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))`
(a + b)2 = a2 + 2ab + b2
Also `x = 1/y` or `y = 1/x`
Let a = x
b = y
(x + y)2 = x2 + 2xy + y2
But we know `y = 1/x`
`(x + 1/x)^2 = x^2 + 1/x^2 + 2 xx x xx 1/x`
`(x + 1/x)^2 = x^2 + 1/x^2 + 2`
`x^2 + 1/x^2 = (x + 1/x)^2 - 2`
= `((sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) + (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)))^2 - 2`
= `(((sqrt(3) + sqrt(2))^2 + (sqrt(3) - sqrt(2))^2)/((sqrt(3) - sqrt(2)) xx sqrt(3) + sqrt(2)))^2 - 2`
= `((3 + 2sqrt(6) + 2 - 3 - 2sqrt(6) + 2)/((sqrt(3) - sqrt(2)) xx (sqrt(3) + sqrt(2))))^2 - 2`
Here the denominators form the expansion as
(a + b) × (a – b) = (a2 – b2)
Here `a = sqrt(3)`
`b = sqrt(2)`
`a^2 = (sqrt(3))^2`
= 3
`b^2 = (sqrt(2))^2`
= 2
= `(10/(3 - 2))^2 - 2`
= 102 – 2
= 100 – 2
= 98
APPEARS IN
संबंधित प्रश्न
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`3/sqrt10`
Rationales the denominator and simplify:
`(2sqrt6 - sqrt5)/(3sqrt5 - 2sqrt6)`
Rationales the denominator and simplify:
`(2sqrt3 - sqrt5)/(2sqrt2 + 3sqrt3)`
if `x = 2 + sqrt3`,find the value of `x^2 + 1/x^2`
If\[\frac{\sqrt{3} - 1}{\sqrt{3} + 1} = x + y\sqrt{3},\] find the values of x and y.
Write the rationalisation factor of \[\sqrt{5} - 2\].
Classify the following number as rational or irrational:
`1/sqrt2`
Value of `root(4)((81)^-2)` is ______.
Simplify the following:
`sqrt(45) - 3sqrt(20) + 4sqrt(5)`
Rationalise the denominator of the following:
`(4sqrt(3) + 5sqrt(2))/(sqrt(48) + sqrt(18))`