Advertisements
Advertisements
प्रश्न
Rationales the denominator and simplify:
`(2sqrt6 - sqrt5)/(3sqrt5 - 2sqrt6)`
उत्तर
We know that rationalization factor for `3sqrt5 - 2sqrt6` is `3sqrt5 + 2sqrt6` . We will multiply numerator and denominator of the given expression `(2sqrt6 - sqrt5)/(3sqrt5 - 2sqrt6)` by `3sqrt5 + 2sqrt6` to get
`(2sqrt6 - sqrt5)/(3sqrt5 - 2sqrt6) xx (3sqrt5 + 2sqrt6)/(2sqrt + 2 sqrt6) = (2xx 3 xx sqrt6 + sqrt5 + (2sqrt6)^2 - 3 xx (sqrt5)^2 - 2 xx sqrt5 xx sqrt6)/((3sqrt5)^2 - (2sqrt6)^2)`
`= (6sqrt(6 xx 5) + 4 xx 6 - 3 xx (sqrt5)^2 - 2 xx sqrt5 xx sqrt6)/(9 xx 5 - 4 xx 6)`
` = (6sqrt30 + 24 - 15 - 2sqrt30)/(45 - 24)`
`= (9 + 4sqrt30)/21`
Hence the given expression is simplified to `(9 + 4sqrt30)/21`
APPEARS IN
संबंधित प्रश्न
Simplify the following expression:
`(sqrt5 - sqrt2)(sqrt5 + sqrt2)`
Express the following with rational denominator:
`1/(2sqrt5 - sqrt3)`
Express the following with rational denominator:
`(sqrt3 + 1)/(2sqrt2 - sqrt3)`
In the following determine rational numbers a and b:
`(3 + sqrt2)/(3 - sqrt2) = a + bsqrt2`
\[\sqrt{10} \times \sqrt{15}\] is equal to
Simplify the following:
`3/sqrt(8) + 1/sqrt(2)`
Rationalise the denominator of the following:
`(2 + sqrt(3))/(2 - sqrt(3))`
Rationalise the denominator of the following:
`sqrt(6)/(sqrt(2) + sqrt(3))`
Rationalise the denominator of the following:
`(3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3))`
Simplify:
`64^(-1/3)[64^(1/3) - 64^(2/3)]`