Advertisements
Advertisements
प्रश्न
Simplify the following expression:
`(sqrt5 - sqrt2)(sqrt5 + sqrt2)`
उत्तर
The given expression is `(sqrt5 - sqrt2) (sqrt5 + sqrt2)`
We know that (a + b) (a - b) = a2 - b2
⇒ `(sqrt5 - sqrt2) (sqrt5 + sqrt2) = (sqrt5)^2 - (sqrt2)^2`
⇒ `(sqrt5 - sqrt2) (sqrt5 + sqrt2) = 5 - 2`
∴ `(sqrt5 - sqrt2) (sqrt5 + sqrt2) = 3`
APPEARS IN
संबंधित प्रश्न
Simplify the following expression:
`(3+sqrt3)(2+sqrt2)`
Rationalise the denominator of the following:
`1/sqrt7`
Simplify of the following:
`root(3)4 xx root(3)16`
Rationalise the denominator of the following
`(3sqrt2)/sqrt5`
\[\sqrt[5]{6} \times \sqrt[5]{6}\] is equal to
Simplify the following:
`sqrt(24)/8 + sqrt(54)/9`
Simplify the following:
`4sqrt(28) ÷ 3sqrt(7) ÷ root(3)(7)`
Rationalise the denominator of the following:
`(2 + sqrt(3))/(2 - sqrt(3))`
Rationalise the denominator of the following:
`(3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3))`
Simplify:
`[((625)^(-1/2))^((-1)/4)]^2`