Advertisements
Advertisements
प्रश्न
Simplify:
`[((625)^(-1/2))^((-1)/4)]^2`
उत्तर
`[((625)^(-1/2))^((-1)/4)]^2 = [((25^2)^(-1/2))^(-1/4)]^2` ...[∵ (am)n = amn]
= `(25^-1)^(-1/4 xx 2)`
= `[(5^2)^-1]^(-1/4 xx 2)`
= `5^(-2 xx -1/4 xx 2)`
= 51
= 5
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(sqrt8 - sqrt2)(sqrt8 + sqrt2)`
Simplify the following expressions:
`(3 + sqrt3)(3 - sqrt3)`
Simplify:
`2/(sqrt5 + sqrt3) + 1/(sqrt3 + sqrt2) - 3/(sqrt5 + sqrt2)`
In the following determine rational numbers a and b:
`(4 + 3sqrt5)/(4 - 3sqrt5) = a + bsqrt5`
Rationalise the denominator of the following:
`1/(sqrt7-2)`
Simplify the following:
`4sqrt12 xx 7sqrt6`
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Simplify the following:
`(2sqrt(3))/3 - sqrt(3)/6`
Find the value of a and b in the following:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = 2 - bsqrt(6)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`6/sqrt(6)`