Advertisements
Advertisements
प्रश्न
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
उत्तर
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3) = 3sqrt(3) + 2sqrt(3 xx 3 xx 3) + 7/sqrt(3) xx sqrt(3)/sqrt(3)`
= `3sqrt(3) + 6sqrt(3) + (7sqrt(3))/3`
= `9sqrt(3) + (7sqrt(3))/3`
= `(27sqrt(3) + 7sqrt(3))/3`
= `(34sqrt(3))/3`
APPEARS IN
संबंधित प्रश्न
Simplify the following expressions:
`(sqrt5 - 2)(sqrt3 - sqrt5)`
Express the following with rational denominator:
`16/(sqrt41 - 5)`
Rationales the denominator and simplify:
`(2sqrt6 - sqrt5)/(3sqrt5 - 2sqrt6)`
In the following determine rational numbers a and b:
`(4 + 3sqrt5)/(4 - 3sqrt5) = a + bsqrt5`
Simplify `(7 + 3sqrt5)/(3 + sqrt5) - (7 - 3sqrt5)/(3 - sqrt5)`
If \[\frac{\sqrt{3 - 1}}{\sqrt{3} + 1}\] =\[a - b\sqrt{3}\] then
Classify the following number as rational or irrational:
`1/sqrt2`
Simplify the following:
`3/sqrt(8) + 1/sqrt(2)`
Rationalise the denominator of the following:
`(3sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3))`
Find the value of `4/((216)^(-2/3)) + 1/((256)^(- 3/4)) + 2/((243)^(- 1/5))`