Advertisements
Advertisements
प्रश्न
Simplify:
`(1/27)^((-2)/3)`
उत्तर
`(1/27)^((-2)/3) = (1/3^3)^((-2)/3)` ...`[∵ 1/a = a^-1]`
= `(3^-3)^((-2)/3)`
= `3^(-3 xx -2/3)` ...[∵ (am)n = amn]
= 32
= 9
APPEARS IN
संबंधित प्रश्न
Rationalise the denominator of each of the following
`3/sqrt5`
Express the following with rational denominator:
`1/(3 + sqrt2)`
Rationales the denominator and simplify:
`(3 - sqrt2)/(3 + sqrt2)`
In the following determine rational numbers a and b:
`(sqrt11 - sqrt7)/(sqrt11 + sqrt7) = a - bsqrt77`
Find the values the following correct to three places of decimals, it being given that `sqrt2 = 1.4142`, `sqrt3 = 1.732`, `sqrt5 = 2.2360`, `sqrt6 = 2.4495` and `sqrt10 = 3.162`
`(1 + sqrt2)/(3 - 2sqrt2)`
if `x= 3 + sqrt8`, find the value of `x^2 + 1/x^2`
\[\sqrt{10} \times \sqrt{15}\] is equal to
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`sqrt(2)/(2 + sqrt(2)`
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`
Simplify:
`(256)^(-(4^((-3)/2))`