Advertisements
Advertisements
प्रश्न
Simplify:
`(256)^(-(4^((-3)/2))`
उत्तर
`(256)^(-(4^(-3/2))) = (256)^(-(4)^(-3/2)`
= `(256)^(-(2^2)^(-3/2))`
= `(256)^(-(2^(2 xx -3/2))` ...`[∵ b^((a^m)^n) = b^(a^(mn))]`
= `(256)^(-(2^-3))`
= `(2^8)^(-(1/2^3)`
= `(2^8)^(-1/8)`
= `2^(8 xx -1/8)`
= `2^-1`
= `1/2`
APPEARS IN
संबंधित प्रश्न
Simplify the following expression:
`(3+sqrt3)(2+sqrt2)`
Simplify of the following:
`root(4)1250/root(4)2`
Rationalise the denominator of the following:
`3/(2sqrt5)`
Express the following with rational denominator:
`(6 - 4sqrt2)/(6 + 4sqrt2)`
Simplify:
`2/(sqrt5 + sqrt3) + 1/(sqrt3 + sqrt2) - 3/(sqrt5 + sqrt2)`
Simplify the following expression:
`(sqrt5+sqrt2)^2`
Simplify the following:
`3/sqrt(8) + 1/sqrt(2)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`4/sqrt(3)`
Simplify:
`(1/27)^((-2)/3)`
Simplify:
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2))`