Advertisements
Advertisements
प्रश्न
Simplify of the following:
`root(4)1250/root(4)2`
उत्तर
We know that `(root(n)a)/(root(n)b) = root(n)(a/b)`We will use this property to simplify the expression `root(4)(1250)/root(4)2`
`:. root(4)1250/root(4)(2) = root(4)625`
`= root(4)(5^4)`
`=(5)^1`
= 5
Hence the value of the given expression is 5
APPEARS IN
संबंधित प्रश्न
Rationalise the denominator of the following:
`1/sqrt7`
Express the following with rational denominator:
`1/(3 + sqrt2)`
Rationales the denominator and simplify:
`(4sqrt3 + 5sqrt2)/(sqrt48 + sqrt18)`
Simplify
`1/(2 + sqrt3) + 2/(sqrt5 - sqrt3) + 1/(2 - sqrt5)`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
Simplify the following expression:
`(3+sqrt3)(3-sqrt3)`
The number obtained on rationalising the denominator of `1/(sqrt(7) - 2)` is ______.
Rationalise the denominator of the following:
`sqrt(6)/(sqrt(2) + sqrt(3))`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`sqrt(2)/(2 + sqrt(2)`
Simplify:
`64^(-1/3)[64^(1/3) - 64^(2/3)]`