Advertisements
Advertisements
प्रश्न
Simplify of the following:
`root(4)1250/root(4)2`
उत्तर
We know that `(root(n)a)/(root(n)b) = root(n)(a/b)`We will use this property to simplify the expression `root(4)(1250)/root(4)2`
`:. root(4)1250/root(4)(2) = root(4)625`
`= root(4)(5^4)`
`=(5)^1`
= 5
Hence the value of the given expression is 5
APPEARS IN
संबंधित प्रश्न
Express the following with rational denominator:
`30/(5sqrt3 - 3sqrt5)`
Rationales the denominator and simplify:
`(5 + 2sqrt3)/(7 + 4sqrt3)`
Simplify:
`(5 + sqrt3)/(5 - sqrt3) + (5 - sqrt3)/(5 + sqrt3)`
if `x= 3 + sqrt8`, find the value of `x^2 + 1/x^2`
If \[x = 3 + 2\sqrt{2}\],then find the value of \[\sqrt{x} - \frac{1}{\sqrt{x}}\].
The number obtained on rationalising the denominator of `1/(sqrt(7) - 2)` is ______.
Simplify the following:
`3sqrt(3) + 2sqrt(27) + 7/sqrt(3)`
Find the value of a and b in the following:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = a - 6sqrt(3)`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`1/(sqrt(3) + sqrt(2))`
Simplify:
`64^(-1/3)[64^(1/3) - 64^(2/3)]`