Advertisements
Advertisements
प्रश्न
Simplify:
`64^(-1/3)[64^(1/3) - 64^(2/3)]`
उत्तर
`64^(-1/3)[64^(1/3) - 64^(2/3)] = (4^3)^(-1/3)[(4^3)^(1/3) - (4^3)^(2/3)]` ...[∵ (am)n = amn]
= `4^(3 xx - 1/3) (4^(3 xx 1/3) - 4^(3 xx 2/3))`
= 4–1(4 – 42)
= `1/4(4 - 16)`
= `-12/4`
= – 3
APPEARS IN
संबंधित प्रश्न
Simplify the following expression:
`(3+sqrt3)(2+sqrt2)`
Simplify of the following:
`root(3)4 xx root(3)16`
Rationalise the denominator of the following:
`3/(2sqrt5)`
Find the value to three places of decimals of the following. It is given that
`sqrt2 = 1.414`, `sqrt3 = 1.732`, `sqrt5 = 2.236` and `sqrt10 = 3.162`
`(2 + sqrt3)/3`
Simplify `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + sqrt12/(sqrt3 - sqrt2)`
Simplify \[\sqrt{3 - 2\sqrt{2}}\].
\[\sqrt{10} \times \sqrt{15}\] is equal to
The value of `(sqrt(32) + sqrt(48))/(sqrt(8) + sqrt(12))` is equal to ______.
Simplify the following:
`sqrt(24)/8 + sqrt(54)/9`
Rationalise the denominator in the following and hence evaluate by taking `sqrt(2) = 1.414, sqrt(3) = 1.732` and `sqrt(5) = 2.236`, upto three places of decimal.
`(sqrt(10) - sqrt(5))/2`