Advertisements
Advertisements
प्रश्न
Simplify:
`(9^(1/3) xx 27^(-1/2))/(3^(1/6) xx 3^(- 2/3))`
उत्तर
`(9^(1/3) xx 27^(-1/2))/(3^(1/6) xx 3^(-2/3)) = ((3^2)^(1/3) xx (3^3)^(-1/2))/(3^(1/6) xx 3^(-2/3))` ...[∵ (am)n = amn]
= `(3^(2/3) xx 3^(-3/2))/(3^(1/6) xx 3^(-2/3))` ...[∵ am × an = am + n]
= `(3^(2/3 - 3/2))/(3^(1/6 - 2/3))`
= `(3^((4 - 9)/6))/(3^((1 - 4)/6))` ...`[∵ a^m/a^n = a^(m - n)]`
= `(3^(-5/6))/(3^(-3/6)`
= `3^(- 5/6 + 3/6)`
= `3^(-2/6)`
= `3^(-1/3)`
APPEARS IN
संबंधित प्रश्न
Simplify:-
`2^(2/3). 2^(1/5)`
Simplify the following
`((x^2y^2)/(a^2b^3))^n`
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
If ax = by = cz and b2 = ac, show that `y=(2zx)/(z+x)`
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
State the power law of exponents.
The value of 64-1/3 (641/3-642/3), is
The value of \[\sqrt{5 + 2\sqrt{6}}\] is