Advertisements
Advertisements
प्रश्न
Simplify:-
`2^(2/3). 2^(1/5)`
उत्तर
We can write the given expression as
⇒ `2^(2/3) xx 2^(1/5) = 2^(2/3 + 1/5)`
On simplifying
∴ `2^(2/3) xx 2^(1/5) = 2^(13/15)`
APPEARS IN
संबंधित प्रश्न
Assuming that x, y, z are positive real numbers, simplify the following:
`root5(243x^10y^5z^10)`
Prove that:
`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
If `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n,` Prove that `a^(m-n)b^(n-l)c^(l-m)=1`
The value of \[\left\{ 2 - 3 (2 - 3 )^3 \right\}^3\] is
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
If (16)2x+3 =(64)x+3, then 42x-2 =
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =
Simplify:
`(1^3 + 2^3 + 3^3)^(1/2)`