Advertisements
Advertisements
प्रश्न
If `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n,` Prove that `a^(m-n)b^(n-l)c^(l-m)=1`
उत्तर
Given `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n`
Putting the values of a, b and c in `a^(m-n)b^(n-l)c^(l-m),` we get
`a^(m-n)b^(n-l)c^(l-m)`
`=(x^(m+n)y^l)^(m-n)(x^(n+l)y^m)^(n-l)(x^(l+m)y^n)^(l-m)`
`=[x^((m+n)(m-n))y(l(m-n))][x^((n+l)(n-l))y^(m(n-l))][x^((l+m)(l_m))y^(n(l-m))]`
`=x^((m^2-n^2))x^((n^2-l^2))x^((l^2-m^2))y^(lm-ln)y^(mn-ml)y^(nl-nm)`
`=x^0y^0`
= 1
APPEARS IN
संबंधित प्रश्न
Prove that:
`(a+b+c)/(a^-1b^-1+b^-1c^-1+c^-1a^-1)=abc`
Solve the following equations for x:
`3^(2x+4)+1=2.3^(x+2)`
Prove that:
`(2^(1/2)xx3^(1/3)xx4^(1/4))/(10^(-1/5)xx5^(3/5))div(3^(4/3)xx5^(-7/5))/(4^(-3/5)xx6)=10`
The value of x − yx-y when x = 2 and y = −2 is
Which of the following is (are) not equal to \[\left\{ \left( \frac{5}{6} \right)^{1/5} \right\}^{- 1/6}\] ?
If (23)2 = 4x, then 3x =
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
The simplest rationalising factor of \[\sqrt[3]{500}\] is
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to