Advertisements
Advertisements
प्रश्न
Prove that:
`(a+b+c)/(a^-1b^-1+b^-1c^-1+c^-1a^-1)=abc`
उत्तर
Consider the left hand side:
`(a+b+c)/(a^-1b^-1+b^-1c^-1+c^-1a^-1)`
`=(a+b+c)/(1/(ab)+1/(bc)+1/(ca))`
`=(a+b+c)/((c+a+b)/abc)`
`=(a+b+c)xx(abc/(a+b+c))`
= abc
Therefore left hand side is equal to the right hand side. Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that:
`(2^n+2^(n-1))/(2^(n+1)-2^n)=3/2`
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
Solve the following equation:
`3^(x+1)=27xx3^4`
State the product law of exponents.
If 24 × 42 =16x, then find the value of x.
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
If 102y = 25, then 10-y equals
The value of 64-1/3 (641/3-642/3), is
If (16)2x+3 =(64)x+3, then 42x-2 =
If `a = 2 + sqrt(3)`, then find the value of `a - 1/a`.