Advertisements
Advertisements
प्रश्न
Prove that:
`(2^n+2^(n-1))/(2^(n+1)-2^n)=3/2`
उत्तर
We have to prove that `(2^n+2^(n-1))/(2^(n+1)-2^n)=3/2`
Let x = `(2^n+2^(n-1))/(2^(n+1)-2^n)`
`=(2^n(1+1xx2^-1))/(2^n(2^1-1))`
`=(1+1/2)/(2-1)`
`rArrx=3/2`
Hence, `(2^n+2^(n-1))/(2^(n+1)-2^n)=3/2`
APPEARS IN
संबंधित प्रश्न
Solve the following equation for x:
`7^(2x+3)=1`
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
If `27^x=9/3^x,` find x.
Find the value of x in the following:
`(root3 4)^(2x+1/2)=1/32`
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
Write the value of \[\sqrt[3]{7} \times \sqrt[3]{49} .\]
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
If x is a positive real number and x2 = 2, then x3 =
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =