Advertisements
Advertisements
प्रश्न
If `27^x=9/3^x,` find x.
उत्तर
We are given `27^x=9/3^x`
We have to find the value of x
Since `(3^3)^x=3^2/3^x`
By using the law of exponents `a^m/a^n=a^(m-n)` we get,
`3^(3x)=3^(2-x)`
on equating the exponents we get,
3x = 2 - x
3x + x = 2
4x = 2
x = 2/4
x = 1/2
Hence, `x=1/2`
APPEARS IN
संबंधित प्रश्न
Simplify:-
`2^(2/3). 2^(1/5)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Simplify:
`root3((343)^-2)`
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
Prove that:
`sqrt(1/4)+(0.01)^(-1/2)-(27)^(2/3)=3/2`
Prove that:
`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
Find the value of x in the following:
`2^(5x)div2x=root5(2^20)`
When simplified \[(256) {}^{- ( 4^{- 3/2} )}\] is
If \[x = \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} - \sqrt{3}}\] and \[y = \frac{\sqrt{5} - \sqrt{3}}{\sqrt{5} + \sqrt{3}}\] then x + y +xy=
The value of \[\sqrt{5 + 2\sqrt{6}}\] is