Advertisements
Chapters
▶ 2: Exponents of Real Numbers
3: Rationalisation
4: Algebraic Identities
5: Factorisation of Algebraic Expressions
6: Factorisation of Polynomials
7: Linear Equations in Two Variables
8: Co-ordinate Geometry
9: Introduction to Euclid’s Geometry
10: Lines and Angles
11: Triangle and its Angles
12: Congruent Triangles
13: Quadrilaterals
14: Areas of Parallelograms and Triangles
15: Circles
16: Constructions
17: Heron’s Formula
18: Surface Areas and Volume of a Cuboid and Cube
19: Surface Areas and Volume of a Circular Cylinder
20: Surface Areas and Volume of A Right Circular Cone
21: Surface Areas and Volume of a Sphere
22: Tabular Representation of Statistical Data
23: Graphical Representation of Statistical Data
24: Measures of Central Tendency
25: Probability
![RD Sharma solutions for Mathematics [English] Class 9 chapter 2 - Exponents of Real Numbers RD Sharma solutions for Mathematics [English] Class 9 chapter 2 - Exponents of Real Numbers - Shaalaa.com](/images/8193647912-mathematics-english-class-9_6:1a030933ece146238cec338f12706a07.jpg)
Advertisements
Solutions for Chapter 2: Exponents of Real Numbers
Below listed, you can find solutions for Chapter 2 of CBSE RD Sharma for Mathematics [English] Class 9.
RD Sharma solutions for Mathematics [English] Class 9 2 Exponents of Real Numbers Exercise 2.1 [Pages 12 - 13]
Simplify the following
`3(a^4b^3)^10xx5(a^2b^2)^3`
Simplify the following
`(2x^-2y^3)^3`
Simplify the following
`((4xx10^7)(6xx10^-5))/(8xx10^4)`
Simplify the following
`(4ab^2(-5ab^3))/(10a^2b^2)`
Simplify the following
`((x^2y^2)/(a^2b^3))^n`
Simplify the following
`(a^(3n-9))^6/(a^(2n-4))`
If a = 3 and b = -2, find the values of :
aa + bb
If a = 3 and b = -2, find the values of :
ab + ba
If a = 3 and b = -2, find the values of :
(a + b)ab
Prove that:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)=1`
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Prove that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Prove that:
`1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))=1`
Prove that:
`(a+b+c)/(a^-1b^-1+b^-1c^-1+c^-1a^-1)=abc`
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
If abc = 1, show that `1/(1+a+b^-1)+1/(1+b+c^-1)+1/(1+c+a^-1)=1`
Simplify the following:
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
Simplify the following:
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
Solve the following equation for x:
`7^(2x+3)=1`
Solve the following equation for x:
`2^(x+1)=4^(x-3)`
Solve the following equation for x:
`2^(5x+3)=8^(x+3)`
Solve the following equation for x:
`4^(2x)=1/32`
Solve the following equation for x:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Solve the following equation for x:
`2^(3x-7)=256`
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
Solve the following equations for x:
`3^(2x+4)+1=2.3^(x+2)`
If 49392 = a4b2c3, find the values of a, b and c, where a, b and c are different positive primes.
If `1176=2^a3^b7^c,` find a, b and c.
Given `4725=3^a5^b7^c,` find
(i) the integral values of a, b and c
(ii) the value of `2^-a3^b7^c`
If `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1),` prove that `a^(q-r)b^(r-p)c^(p-q)=1`
RD Sharma solutions for Mathematics [English] Class 9 2 Exponents of Real Numbers Exercise 2.2 [Pages 24 - 27]
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
Assuming that x, y, z are positive real numbers, simplify the following:
`sqrt(x^3y^-2)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^((-2)/3)y^((-1)/2))^2`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrtx)^((-2)/3)sqrt(y^4)divsqrt(xy^((-1)/2))`
Assuming that x, y, z are positive real numbers, simplify the following:
`root5(243x^10y^5z^10)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^-4/y^-10)^(5/4)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Simplify:
`(16^(-1/5))^(5/2)`
Simplify:
`root5((32)^-3)`
Simplify:
`root3((343)^-2)`
Simplify:
`(0.001)^(1/3)`
Simplify:
`((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))`
Simplify:
`(sqrt2/5)^8div(sqrt2/5)^13`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
Prove that:
`(2^(1/2)xx3^(1/3)xx4^(1/4))/(10^(-1/5)xx5^(3/5))div(3^(4/3)xx5^(-7/5))/(4^(-3/5)xx6)=10`
Prove that:
`sqrt(1/4)+(0.01)^(-1/2)-(27)^(2/3)=3/2`
Prove that:
`(2^n+2^(n-1))/(2^(n+1)-2^n)=3/2`
Prove that:
`(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
Prove that:
`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
Prove that:
`((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
Show that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
Show that:
`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
Show that:
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
Show that:
`(a^(x+1)/a^(y+1))^(x+y)(a^(y+2)/a^(z+2))^(y+z)(a^(z+3)/a^(x+3))^(z+x)=1`
Show that:
`(3^a/3^b)^(a+b)(3^b/3^c)^(b+c)(3^c/3^a)^(c+a)=1`
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
If 2x = 3y = 6-z, show that `1/x+1/y+1/z=0`
If ax = by = cz and b2 = ac, show that `y=(2zx)/(z+x)`
If 3x = 5y = (75)z, show that `z=(xy)/(2x+y)`
If `27^x=9/3^x,` find x.
Find the value of x in the following:
`2^(5x)div2x=root5(2^20)`
Find the value of x in the following:
`(2^3)^4=(2^2)^x`
Find the value of x in the following:
`(3/5)^x(5/3)^(2x)=125/27`
Find the value of x in the following:
`5^(x-2)xx3^(2x-3)=135`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
Find the value of x in the following:
`(root3 4)^(2x+1/2)=1/32`
Find the value of x in the following:
`5^(2x+3)=1`
Find the value of x in the following:
`(13)^(sqrtx)=4^4-3^4-6`
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
Determine `(8x)^x,`If `9^(x+2)=240+9^x`
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
If `5^(3x)=125` and `10^y=0.001,` find x and y.
Solve the following equation:
`3^(x+1)=27xx3^4`
Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
Solve the following equation:
`3^(x-1)xx5^(2y-3)=225`
Solve the following equation:
`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Solve the following equation:
`sqrt(a/b)=(b/a)^(1-2x),` where a and b are distinct primes.
If a and b are distinct primes such that `root3 (a^6b^-4)=a^xb^(2y),` find x and y.
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
If a and b are different positive primes such that
`(a+b)^-1(a^-1+b^-1)=a^xb^y,` find x + y + 2.
If `2^x xx3^yxx5^z=2160,` find x, y and z. Hence, compute the value of `3^x xx2^-yxx5^-z.`
If 1176 = `2^axx3^bxx7^c,` find the values of a, b and c. Hence, compute the value of `2^axx3^bxx7^-c` as a fraction.
Simplify:
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
Show that:
`((a+1/b)^mxx(a-1/b)^n)/((b+1/a)^mxx(b-1/a)^n)=(a/b)^(m+n)`
If `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n,` Prove that `a^(m-n)b^(n-l)c^(l-m)=1`
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
RD Sharma solutions for Mathematics [English] Class 9 2 Exponents of Real Numbers Exercise 2.3 [Pages 28 - 29]
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
State the product law of exponents.
State the quotient law of exponents.
State the power law of exponents.
If 24 × 42 =16x, then find the value of x.
If 3x-1 = 9 and 4y+2 = 64, what is the value of \[\frac{x}{y}\] ?
Write the value of \[\sqrt[3]{7} \times \sqrt[3]{49} .\]
Write \[\left( \frac{1}{9} \right)^{- 1/2} \times (64 )^{- 1/3}\] as a rational number.
Write the value of \[\sqrt[3]{125 \times 27}\].
For any positive real number x, find the value of \[\left( \frac{x^a}{x^b} \right)^{a + b} \times \left( \frac{x^b}{x^c} \right)^{b + c} \times \left( \frac{x^c}{x^a} \right)^{c + a}\].
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
Simplify \[\left[ \left\{ \left( 625 \right)^{- 1/2} \right\}^{- 1/4} \right]^2\]
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
If (x − 1)3 = 8, What is the value of (x + 1)2 ?
RD Sharma solutions for Mathematics [English] Class 9 2 Exponents of Real Numbers Exercise 2.4 [Pages 29 - 33]
The value of \[\left\{ 2 - 3 (2 - 3 )^3 \right\}^3\] is
5
125
1/5
-125
The value of x − yx-y when x = 2 and y = −2 is
18
-18
14
-14
The product of the square root of x with the cube root of x is
cube root of the square root of x
sixth root of the fifth power of x
fifth root of the sixth power of x
sixth root of x
The seventh root of x divided by the eighth root of x is
x
\[\sqrt{x}\]
\[\sqrt[56]{x}\]
\[\frac{1}{\sqrt[56]{x}}\]
The square root of 64 divided by the cube root of 64 is
64
2
\[\frac{1}{2}\]
642/3
Which of the following is (are) not equal to \[\left\{ \left( \frac{5}{6} \right)^{1/5} \right\}^{- 1/6}\] ?
\[\left\{ \left( \frac{5}{6} \right)^\frac{1}{5} \right\}^{- \frac{3}{6}}\]
\[\frac{1}{\left\{ \left( \frac{5}{6} \right)^{1/5} \right\}^{1/6}}\]
\[\left( \frac{6}{5} \right)^{1/30}\]
\[\left( \frac{5}{6} \right)^{- 1/30}\]
When simplified \[( x^{- 1} + y^{- 1} )^{- 1}\] is equal to
xy
x+y
\[\frac{xy}{y + x}\]
\[\frac{x + y}{xy}\]
If \[8^{x + 1}\] = 64 , what is the value of \[3^{2x + 1}\] ?
1
3
9
27
If (23)2 = 4x, then 3x =
3
6
9
27
If x-2 = 64, then x1/3+x0 =
2
3
3/2
2/3
When simplified \[\left( - \frac{1}{27} \right)^{- 2/3}\] is
9
-9
\[\frac{1}{9}\]
\[- \frac{1}{9}\]
Which one of the following is not equal to \[\left( \sqrt[3]{8} \right)^{- 1/2} ?\]
\[\sqrt[3]{2}^{- 1/2}\]
\[8^{- 1/6}\]
\[\frac{1}{(\sqrt[3]{8} )^{1/2}}\]
\[\frac{1}{\sqrt{2}}\]
Which one of the following is not equal to \[\left( \frac{100}{9} \right)^{- 3/2}\]?
\[\left( \frac{9}{100} \right)^{3/2}\]
\[\left( \frac{1}{\frac{100}{9}} \right)^{3/2}\]
\[\frac{3}{10} \times \frac{3}{10} \times \frac{3}{10}\]
\[\sqrt{\frac{100}{9}} \times \sqrt{\frac{100}{9}} \times \sqrt{\frac{100}{9}}\]
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to
1
abc
\[\sqrt{abc}\]
\[\frac{1}{abc}\]
`(2/3)^x (3/2)^(2x)=81/16 `then x =
2
3
4
1
The value of \[\left\{ 8^{- 4/3} \div 2^{- 2} \right\}^{1/2}\] is
\[\frac{1}{2}\]
2
\[\frac{1}{4}\]
4
If a, b, c are positive real numbers, then \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] is equal to
5a2bc2
25ab2c
5a3bc3
125a2bc2
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to
amn
a
am/n
1
If x = 2 and y = 4, then \[\left( \frac{x}{y} \right)^{x - y} + \left( \frac{y}{x} \right)^{y - x} =\]
4
8
12
2
The value of m for which \[\left[ \left\{ \left( \frac{1}{7^2} \right)^{- 2} \right\}^{- 1/3} \right]^{1/4} = 7^m ,\] is
\[- \frac{1}{3}\]
\[\frac{1}{4}\]
-3
2
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
196
289
324
400
(256)0.16 × (256)0.09
4
16
64
256.25
If 102y = 25, then 10-y equals
- \[- \frac{1}{5}\]
- \[\frac{1}{50}\]
- \[\frac{1}{625}\]
- \[\frac{1}{5}\]
If 9x+2 = 240 + 9x, then x =
0.5
0.2
0.4
0.1
If x is a positive real number and x2 = 2, then x3 =
\[\sqrt{2}\]
2\[\sqrt{2}\]
3\[\sqrt{2}\]
4
If \[\frac{x}{x^{1 . 5}} = 8 x^{- 1}\] and x > 0, then x =
\[\frac{\sqrt{2}}{4}\]
\[\sqrt[2]{2}\]
4
64
If g = `t^(2/3) + 4t^(-1/2)`, what is the value of g when t = 64?
`31/2`
`33/2`
16
`257/16`
If \[4x - 4 x^{- 1} = 24,\] then (2x)x equals
\[5\sqrt{5}\]
\[\sqrt{5}\]
\[25\sqrt{5}\]
125
When simplified \[(256) {}^{- ( 4^{- 3/2} )}\] is
8
\[\frac{1}{8}\]
2
\[\frac{1}{2}\]
If \[\frac{3^{2x - 8}}{225} = \frac{5^3}{5^x},\] then x =
2
3
5
4
The value of 64-1/3 (641/3-642/3), is
1
\[\frac{1}{3}\]
-3
-2
If \[\sqrt{5^n} = 125\] then `5nsqrt64`=
25
\[\frac{1}{125}\]
625
\[\frac{1}{5}\]
If (16)2x+3 =(64)x+3, then 42x-2 =
64
256
32
512
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to
- \[\frac{1}{2}\]
2
4
\[- \frac{1}{4}\]
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
2
- \[\frac{1}{4}\]
9
- \[\frac{1}{8}\]
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
3
-3
\[\frac{1}{3}\]
\[- \frac{1}{3}\]
If o <y <x, which statement must be true?
\[\sqrt{x} - \sqrt{y} = \sqrt{x - y}\]
\[\sqrt{x} + \sqrt{x} = \sqrt{2x}\]
\[x\sqrt{y} = y\sqrt{x}\]
\[\sqrt{xy} = \sqrt{x}\sqrt{y}\]
If 10x = 64, what is the value of \[{10}^\frac{x}{2} + 1 ?\]
18
42
80
81
\[\frac{5^{n + 2} - 6 \times 5^{n + 1}}{13 \times 5^n - 2 \times 5^{n + 1}}\] is equal to
\[\frac{5}{3}\]
\[- \frac{5}{3}\]
\[\frac{3}{5}\]
\[- \frac{3}{5}\]
If \[\sqrt{2^n} = 1024,\] then \[{3^2}^\left( \frac{n}{4} - 4 \right) =\]
3
9
27
81
Solutions for 2: Exponents of Real Numbers
![RD Sharma solutions for Mathematics [English] Class 9 chapter 2 - Exponents of Real Numbers RD Sharma solutions for Mathematics [English] Class 9 chapter 2 - Exponents of Real Numbers - Shaalaa.com](/images/8193647912-mathematics-english-class-9_6:1a030933ece146238cec338f12706a07.jpg)
RD Sharma solutions for Mathematics [English] Class 9 chapter 2 - Exponents of Real Numbers
Shaalaa.com has the CBSE Mathematics Mathematics [English] Class 9 CBSE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. RD Sharma solutions for Mathematics Mathematics [English] Class 9 CBSE 2 (Exponents of Real Numbers) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. RD Sharma textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [English] Class 9 chapter 2 Exponents of Real Numbers are Introduction of Real Number, Concept of Irrational Numbers, Real Numbers and Their Decimal Expansions, Representing Real Numbers on the Number Line, Operations on Real Numbers, Laws of Exponents for Real Numbers.
Using RD Sharma Mathematics [English] Class 9 solutions Exponents of Real Numbers exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in RD Sharma Solutions are essential questions that can be asked in the final exam. Maximum CBSE Mathematics [English] Class 9 students prefer RD Sharma Textbook Solutions to score more in exams.
Get the free view of Chapter 2, Exponents of Real Numbers Mathematics [English] Class 9 additional questions for Mathematics Mathematics [English] Class 9 CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.