Advertisements
Advertisements
प्रश्न
If `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1),` prove that `a^(q-r)b^(r-p)c^(p-q)=1`
उत्तर
It is given that `a=xy^(p-1), b=xy^(q-1)` and `c=xy^(r-1)`
`thereforea^(q-r)b^(r-p)c^(p-q)`
`=(xy^(p-1))^(q-r)(xy^(q-1))^(r-p)(xy^(r-1))^(p-q)`
`=x^((q-r))y^((p-1)(q-r))x^((r-p))y^((r-p)(q-1))x^((p-q))y^((p-q)(r-1))`
`=x^((q-r))x^((r-p))x^((p-q))y^((p-1)(q-r))y^((r-p)(q-1))y^((p-q)(r-1))`
`=x^((q-r)+(r-p)+(p-q))y^((p-1)(q-r)+(r-p)(q-1)+(p-q)(r-1))`
`=x^(q-r+r-p+p-q)y^(pq-q-pr+r+rq-r-pq+p+pr-p-qr+q)`
`=x^0y^0`
= 1
Hence proved.
APPEARS IN
संबंधित प्रश्न
Simplify:
`((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))`
Prove that:
`(64/125)^(-2/3)+1/(256/625)^(1/4)+(sqrt25/root3 64)=65/16`
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
If `x=2^(1/3)+2^(2/3),` Show that x3 - 6x = 6
If `3^(4x) = (81)^-1` and `10^(1/y)=0.0001,` find the value of ` 2^(-x+4y)`.
If 24 × 42 =16x, then find the value of x.
If (16)2x+3 =(64)x+3, then 42x-2 =
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to
Find:-
`125^((-1)/3)`
Which of the following is equal to x?