Advertisements
Advertisements
प्रश्न
Simplify:
`((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))`
उत्तर
Given `((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))`
`((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))=(5^(2xx3/2)xx3^(5xx3/5))/(2^(4xx5/4)xx2^(3xx4/3))`
`=(5^3xx3^3)/(2^5xx2^4)`
`=(125xx27)/(32xx16)`
`=3375/512`
Hence the value of `((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))` is `3375/512`
APPEARS IN
संबंधित प्रश्न
Assuming that x, y, z are positive real numbers, simplify the following:
`sqrt(x^3y^-2)`
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
Prove that:
`sqrt(1/4)+(0.01)^(-1/2)-(27)^(2/3)=3/2`
If `2^x xx3^yxx5^z=2160,` find x, y and z. Hence, compute the value of `3^x xx2^-yxx5^-z.`
If `a=x^(m+n)y^l, b=x^(n+l)y^m` and `c=x^(l+m)y^n,` Prove that `a^(m-n)b^(n-l)c^(l-m)=1`
If a, b, c are positive real numbers, then \[\sqrt{a^{- 1} b} \times \sqrt{b^{- 1} c} \times \sqrt{c^{- 1} a}\] is equal to
If \[2^{- m} \times \frac{1}{2^m} = \frac{1}{4},\] then \[\frac{1}{14}\left\{ ( 4^m )^{1/2} + \left( \frac{1}{5^m} \right)^{- 1} \right\}\] is equal to
\[\frac{1}{\sqrt{9} - \sqrt{8}}\] is equal to
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to
Which of the following is equal to x?