Advertisements
Advertisements
प्रश्न
Simplify:
`((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))`
उत्तर
Given `((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))`
`((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))=(5^(2xx3/2)xx3^(5xx3/5))/(2^(4xx5/4)xx2^(3xx4/3))`
`=(5^3xx3^3)/(2^5xx2^4)`
`=(125xx27)/(32xx16)`
`=3375/512`
Hence the value of `((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))` is `3375/512`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(2x^-2y^3)^3`
If 49392 = a4b2c3, find the values of a, b and c, where a, b and c are different positive primes.
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Prove that:
`(3^-3xx6^2xxsqrt98)/(5^2xxroot3(1/25)xx(15)^(-4/3)xx3^(1/3))=28sqrt2`
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
If 1176 = `2^axx3^bxx7^c,` find the values of a, b and c. Hence, compute the value of `2^axx3^bxx7^-c` as a fraction.
If \[8^{x + 1}\] = 64 , what is the value of \[3^{2x + 1}\] ?
If a, m, n are positive ingegers, then \[\left\{ \sqrt[m]{\sqrt[n]{a}} \right\}^{mn}\] is equal to
If x = 2 and y = 4, then \[\left( \frac{x}{y} \right)^{x - y} + \left( \frac{y}{x} \right)^{y - x} =\]
If \[\sqrt{2} = 1 . 414,\] then the value of \[\sqrt{6} - \sqrt{3}\] upto three places of decimal is