Advertisements
Advertisements
प्रश्न
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
उत्तर
Let 2x = 3y = 12z = k
`rArr2=k^(1/x),` `3=k^(1/y),` `12=k^(1/z)`
Now,
`12=k^(1/z)`
`rArr2^2xx3=k^(1/z)`
`rArr(k^(1/x))^2xxk^(1/y)=k^(1/z)`
`rArrk^(2/x+1/y)=k^(1/z)`
`rArr2/x+1/y=1/z`
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(a^(3n-9))^6/(a^(2n-4))`
Prove that:
`1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))=1`
If abc = 1, show that `1/(1+a+b^-1)+1/(1+b+c^-1)+1/(1+c+a^-1)=1`
Show that:
`(x^(1/(a-b)))^(1/(a-c))(x^(1/(b-c)))^(1/(b-a))(x^(1/(c-a)))^(1/(c-b))=1`
If 2x = 3y = 6-z, show that `1/x+1/y+1/z=0`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
If 3x-1 = 9 and 4y+2 = 64, what is the value of \[\frac{x}{y}\] ?
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
The square root of 64 divided by the cube root of 64 is
Which one of the following is not equal to \[\left( \frac{100}{9} \right)^{- 3/2}\]?