Advertisements
Advertisements
प्रश्न
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
उत्तर
Given `2^(x-7)xx5^(x-4)=1250`
`2^(x-7)xx5^(x-4)=2^1xx625`
`2^(x-7)xx5^(x-4)=2^1xx5^4`
On equating the exponents we get,
x - 7 = 1
x = 7 + 1
x = 8
And,
x - 4 = 4
x = 4 + 4
x = 8
Hence, the value of x = 8.
APPEARS IN
संबंधित प्रश्न
Prove that:
`(a+b+c)/(a^-1b^-1+b^-1c^-1+c^-1a^-1)=abc`
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
Solve the following equations for x:
`3^(2x+4)+1=2.3^(x+2)`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
If 3x = 5y = (75)z, show that `z=(xy)/(2x+y)`
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =
If x = \[\sqrt[3]{2 + \sqrt{3}}\] , then \[x^3 + \frac{1}{x^3} =\]
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to
Simplify:
`(1^3 + 2^3 + 3^3)^(1/2)`