Advertisements
Advertisements
प्रश्न
Simplify:
`(1^3 + 2^3 + 3^3)^(1/2)`
उत्तर
`(1^3 + 2^3 + 3^3)^(1/2) = (1 + 8 + 27)^(1/2)` ...[∵ (am)n = amn]
= `(36)^(1/2)`
= `(6^2)^(1/2)`
= `6^(2 xx 1/2)`
= 6
APPEARS IN
संबंधित प्रश्न
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
Simplify the following:
`(5xx25^(n+1)-25xx5^(2n))/(5xx5^(2n+3)-25^(n+1))`
Solve the following equation for x:
`2^(5x+3)=8^(x+3)`
Assuming that x, y, z are positive real numbers, simplify the following:
`root5(243x^10y^5z^10)`
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
Find the value of x in the following:
`(3/5)^x(5/3)^(2x)=125/27`
If `5^(3x)=125` and `10^y=0.001,` find x and y.
`(2/3)^x (3/2)^(2x)=81/16 `then x =
The value of 64-1/3 (641/3-642/3), is
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =