Advertisements
Advertisements
प्रश्न
Solve the following equation for x:
`2^(5x+3)=8^(x+3)`
उत्तर
`2^(5x+3)=8^(x+3)`
`rArr2^(5x+3)=(2^3)^(x+3)`
`rArr2^(5x+3)=2^(3x+9)`
⇒ 5x + 3 = 3x + 9
⇒ 5x - 3x = 9 - 3
⇒ 2x = 6
⇒ x = 6/2
⇒ x = 3
APPEARS IN
संबंधित प्रश्न
Prove that:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)=1`
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrtx)^((-2)/3)sqrt(y^4)divsqrt(xy^((-1)/2))`
Prove that:
`sqrt(1/4)+(0.01)^(-1/2)-(27)^(2/3)=3/2`
State the product law of exponents.
If 24 × 42 =16x, then find the value of x.
Write \[\left( \frac{1}{9} \right)^{- 1/2} \times (64 )^{- 1/3}\] as a rational number.
If \[\sqrt{5^n} = 125\] then `5nsqrt64`=
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
The positive square root of \[7 + \sqrt{48}\] is