Advertisements
Advertisements
प्रश्न
Prove that:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)=1`
उत्तर
Consider the left hand side:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)`
`=x^(a(a^2+ab+b^2))/x^(b(a^2+ab+b^2))xxx^(b(b^2+bc+c^2))/x^(c(b^2+bc+c^2))xxx^(c(c^2+ca+a^2))/x^(a(c^2+ca+a^2))`
`=x^(a(a^2+ab+b^2)-b(a^2+ab+b^2))xxx^(b(b^2+bc+c^2)-c(b^2+bc+c^2))xxx^(c(c^2+ca+a^2)-a(c^2+ca+a^2))`
`=x^((a-b)(a^2+ab+b^2))xxx^((b-c)(b^2+bc+c^2))xxx^((c-a)(c^2+ca+a^2))`
`=x^((a^3-b^3))xxx((b^3-c^3))xxx^((c^3-a^3))`
`=x^((a^3-b^3+b^3-c^3+c^3-a^3))`
`=x^0`
= 1
Left hand side is equal to right hand side.
Hence proved.
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
ab + ba
Solve the following equation for x:
`7^(2x+3)=1`
Solve the following equations for x:
`2^(2x)-2^(x+3)+2^4=0`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Show that:
`(x^(a-b))^(a+b)(x^(b-c))^(b+c)(x^(c-a))^(c+a)=1`
If 1176 = `2^axx3^bxx7^c,` find the values of a, b and c. Hence, compute the value of `2^axx3^bxx7^-c` as a fraction.
State the power law of exponents.
Write the value of \[\sqrt[3]{7} \times \sqrt[3]{49} .\]
If a, b, c are positive real numbers, then \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] is equal to
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to