Advertisements
Advertisements
प्रश्न
Prove that:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)=1`
उत्तर
Consider the left hand side:
`(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)`
`=x^(a(a^2+ab+b^2))/x^(b(a^2+ab+b^2))xxx^(b(b^2+bc+c^2))/x^(c(b^2+bc+c^2))xxx^(c(c^2+ca+a^2))/x^(a(c^2+ca+a^2))`
`=x^(a(a^2+ab+b^2)-b(a^2+ab+b^2))xxx^(b(b^2+bc+c^2)-c(b^2+bc+c^2))xxx^(c(c^2+ca+a^2)-a(c^2+ca+a^2))`
`=x^((a-b)(a^2+ab+b^2))xxx^((b-c)(b^2+bc+c^2))xxx^((c-a)(c^2+ca+a^2))`
`=x^((a^3-b^3))xxx((b^3-c^3))xxx^((c^3-a^3))`
`=x^((a^3-b^3+b^3-c^3+c^3-a^3))`
`=x^0`
= 1
Left hand side is equal to right hand side.
Hence proved.
APPEARS IN
संबंधित प्रश्न
Simplify:
`(sqrt2/5)^8div(sqrt2/5)^13`
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
Prove that:
`(2^(1/2)xx3^(1/3)xx4^(1/4))/(10^(-1/5)xx5^(3/5))div(3^(4/3)xx5^(-7/5))/(4^(-3/5)xx6)=10`
Show that:
`(x^(a^2+b^2)/x^(ab))^(a+b)(x^(b^2+c^2)/x^(bc))^(b+c)(x^(c^2+a^2)/x^(ac))^(a+c)=x^(2(a^3+b^3+c^3))`
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
Solve the following equation:
`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`
The value of x − yx-y when x = 2 and y = −2 is
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =
If \[\sqrt{2} = 1 . 4142\] then \[\sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + 1}}\] is equal to