Advertisements
Advertisements
प्रश्न
Prove that:
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
उत्तर
we have to prove that `9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
`9^(3/2)-3xx5^0-(1/81)^(-1/2)=3^(2xx3/2)-3xx5^0-1/81^(-1/2)`
`=3^3-3xx1-1/(1/sqrt81)`
`=3^3-3-1/(1/root2(9xx9))`
`=27-3-1/(1/9)`
`=27-3-1xx9/1`
= 27 - 12
= 15
Hence `9^(3/2)-3xx5^0-(1/81)^(-1/2)=15`
APPEARS IN
संबंधित प्रश्न
Find:-
`64^(1/2)`
Solve the following equation for x:
`2^(x+1)=4^(x-3)`
Prove that:
`(2^n+2^(n-1))/(2^(n+1)-2^n)=3/2`
Find the value of x in the following:
`(root3 4)^(2x+1/2)=1/32`
Solve the following equation:
`4^(2x)=(root3 16)^(-6/y)=(sqrt8)^2`
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
If \[x = \sqrt{6} + \sqrt{5}\],then \[x^2 + \frac{1}{x^2} - 2 =\]
Simplify:
`(1^3 + 2^3 + 3^3)^(1/2)`