Advertisements
Advertisements
प्रश्न
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
उत्तर
We have to prove `(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=1^-2/4^-2-3xx2^(3xx2/3)xx4^0+3^(2xx-1/2)/2^(4xx-1/2)`
`=1/2^(2xx-2)-3xx2^2xx4^0+3^-1/2^-2`
`=1/2^-4-3xx2^2xx4^0+3^-1/2^-2`
`=1/(1/2^4)-3xx2^2xx4^0+(1/3)/(1/2^2)`
`=1xx2^4/1-3xx2^2xx1+1/3xx2^2/1`
`=16/1-12/1+4/3`
`=16/3`
Hence, `(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
APPEARS IN
संबंधित प्रश्न
Solve the following equation for x:
`2^(5x+3)=8^(x+3)`
Solve the following equation for x:
`4^(2x)=1/32`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrtx)^((-2)/3)sqrt(y^4)divsqrt(xy^((-1)/2))`
Show that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
Simplify:
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
State the product law of exponents.
The value of x − yx-y when x = 2 and y = −2 is
If x= \[\frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}\] and y = \[\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}\] , then x2 + y +y2 =