Advertisements
Advertisements
प्रश्न
Find the value of x in the following:
`2^(x-7)xx5^(x-4)=1250`
उत्तर
Given `2^(x-7)xx5^(x-4)=1250`
`2^(x-7)xx5^(x-4)=2^1xx625`
`2^(x-7)xx5^(x-4)=2^1xx5^4`
On equating the exponents we get,
x - 7 = 1
x = 7 + 1
x = 8
And,
x - 4 = 4
x = 4 + 4
x = 8
Hence, the value of x = 8.
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Find:-
`64^(1/2)`
If a = 3 and b = -2, find the values of :
aa + bb
Simplify the following:
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
Simplify:
`(0.001)^(1/3)`
Find the value of x in the following:
`(root3 4)^(2x+1/2)=1/32`
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
If (16)2x+3 =(64)x+3, then 42x-2 =
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =
Simplify:
`7^(1/2) . 8^(1/2)`