Advertisements
Advertisements
प्रश्न
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =
विकल्प
1
3
6
7
उत्तर
Given that: `x=2/(3+sqrt7)`
We know that rationalization factor for `3+sqrt7` is .`3-sqrt7` We will multiply numerator and denominator of the given expression `2/(3+sqrt7)` by `3 - sqrt7`, to get
`x = 2/(3+sqrt7) xx (3-sqrt7)/ (3-sqrt7)`
`= (2(3-sqrt7))/((3)^2 - (sqrt7)^2)`
`= (2(3-sqrt7))/(9-7) `
`= 3 - sqrt7`
Therefore,
`x-3 =-sqrt7`
On squaring both sides, we get
`(x-3)^2 = 7`
APPEARS IN
संबंधित प्रश्न
Prove that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Simplify the following:
`(5^(n+3)-6xx5^(n+1))/(9xx5^x-2^2xx5^n)`
Given `4725=3^a5^b7^c,` find
(i) the integral values of a, b and c
(ii) the value of `2^-a3^b7^c`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt(x^-3))^5`
Assuming that x, y, z are positive real numbers, simplify the following:
`(x^((-2)/3)y^((-1)/2))^2`
Find the value of x in the following:
`5^(x-2)xx3^(2x-3)=135`
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
For any positive real number x, find the value of \[\left( \frac{x^a}{x^b} \right)^{a + b} \times \left( \frac{x^b}{x^c} \right)^{b + c} \times \left( \frac{x^c}{x^a} \right)^{c + a}\].
If a, b, c are positive real numbers, then \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] is equal to
Simplify:
`(9^(1/3) xx 27^(-1/2))/(3^(1/6) xx 3^(- 2/3))`