Advertisements
Advertisements
प्रश्न
Prove that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
उत्तर
Consider the left hand side:
`1/(1+x^(a-b))+1/(1+x^(b-a))`
`=1/(1+x^a/x^b)+1/(1+x^b/x^a)`
`=1/((x^b+x^a)/x^b)+1/((x^a+x^b)/x^a)`
`=x^b/(x^b+x^a)+x^a/(x^a+x^b)`
`=(x^b+x^a)/(x^b+x^a)`
= 1
Therefore left hand side is equal to the right hand side. Hence proved.
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
(a + b)ab
Solve the following equation for x:
`7^(2x+3)=1`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Simplify:
`(0.001)^(1/3)`
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
Write \[\left( \frac{1}{9} \right)^{- 1/2} \times (64 )^{- 1/3}\] as a rational number.
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
Find:-
`125^(1/3)`
Simplify:
`7^(1/2) . 8^(1/2)`
Simplify:
`(3/5)^4 (8/5)^-12 (32/5)^6`