Advertisements
Advertisements
प्रश्न
Prove that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
उत्तर
Consider the left hand side:
`1/(1+x^(a-b))+1/(1+x^(b-a))`
`=1/(1+x^a/x^b)+1/(1+x^b/x^a)`
`=1/((x^b+x^a)/x^b)+1/((x^a+x^b)/x^a)`
`=x^b/(x^b+x^a)+x^a/(x^a+x^b)`
`=(x^b+x^a)/(x^b+x^a)`
= 1
Therefore left hand side is equal to the right hand side. Hence proved.
APPEARS IN
संबंधित प्रश्न
If abc = 1, show that `1/(1+a+b^-1)+1/(1+b+c^-1)+1/(1+c+a^-1)=1`
Solve the following equation for x:
`2^(3x-7)=256`
Given `4725=3^a5^b7^c,` find
(i) the integral values of a, b and c
(ii) the value of `2^-a3^b7^c`
If 1176 = `2^axx3^bxx7^c,` find the values of a, b and c. Hence, compute the value of `2^axx3^bxx7^-c` as a fraction.
If 24 × 42 =16x, then find the value of x.
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]
If \[\sqrt{2} = 1 . 414,\] then the value of \[\sqrt{6} - \sqrt{3}\] upto three places of decimal is
If `a = 2 + sqrt(3)`, then find the value of `a - 1/a`.
Simplify:
`(1^3 + 2^3 + 3^3)^(1/2)`