Advertisements
Advertisements
प्रश्न
If abc = 1, show that `1/(1+a+b^-1)+1/(1+b+c^-1)+1/(1+c+a^-1)=1`
उत्तर
Consider the left hand side:
`1/(1+a+b^-1)+1/(1+b+c^-1)+1/(1+c+a^-1)`
`=1/(1+a+1/b)+1/(1+b+1/c)+1/(1+c+1/a)`
`=1/((b+ab+1)/b)+1/((c+bc+1)/c)+1/((a+ac+1)/a)`
`=b/(b+ab+1)+c/(c+bc+1)+a/(a+ac+1)` ...........(1)
We know that abc = 1
`therefore c = 1/(ab)`
By substituting the value of c in equation (1), we get
`=b/(b+ab+1)+(1/(ab))/(1/(ab)+b(1/(ab))+1)+a/(a+a(1/(ab))+1)`
`=b/(b+ab+1)+(1/(ab))/(1/(ab)+b/(ab)+(ab)/(ab))+a/((ab)/b+1/b+b/b)`
`=b/(b+ab+1)+(1/(ab))/((1+b+ab)/(ab))+a/((ab+1+b)/(b))`
`=b/(b+ab+1)+(1/(ab)xxab)/(1+b+ab)+(axxb)/(ab+1+b)`
`=b/(b+ab+1)+1/(b+ab+1)+(ab)/(b+ab+1)`
`=(b+ab+1)/(b+ab+1)`
= 1
Therefore, LHS = RHS
Hence, proved
APPEARS IN
संबंधित प्रश्न
Simplify the following
`((4xx10^7)(6xx10^-5))/(8xx10^4)`
Prove that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
If ax = by = cz and b2 = ac, show that `y=(2zx)/(z+x)`
Find the value of x in the following:
`(2^3)^4=(2^2)^x`
Solve the following equation:
`3^(x+1)=27xx3^4`
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
State the product law of exponents.
Write the value of \[\sqrt[3]{7} \times \sqrt[3]{49} .\]
If \[\frac{3^{5x} \times {81}^2 \times 6561}{3^{2x}} = 3^7\] then x =
The simplest rationalising factor of \[\sqrt{3} + \sqrt{5}\] is ______.