Advertisements
Advertisements
प्रश्न
Simplify the following:
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
उत्तर
`(3^nxx9^(n+1))/(3^(n-1)xx9^(n-1))`
`=(3^nxx(3^2)^(n+1))/(3^(n-1)xx(3^2)^(n-1))`
`=(3^nxx3^(2n+2))/(3^(n-1)xx3^(2n-2))`
`=3^(n+2n+2)/3^(n-1+2n-2)`
`=3^(3n + 2)/3^(3n-3)`
`=3^(3n+2-3n+3)`
= 35
= 243
APPEARS IN
संबंधित प्रश्न
Write \[\left( 625 \right)^{- 1/4}\] in decimal form.
Write the value of \[\sqrt[3]{7} \times \sqrt[3]{49} .\]
For any positive real number x, find the value of \[\left( \frac{x^a}{x^b} \right)^{a + b} \times \left( \frac{x^b}{x^c} \right)^{b + c} \times \left( \frac{x^c}{x^a} \right)^{c + a}\].
The value of \[\left\{ 2 - 3 (2 - 3 )^3 \right\}^3\] is
The seventh root of x divided by the eighth root of x is
When simplified \[\left( - \frac{1}{27} \right)^{- 2/3}\] is
`(2/3)^x (3/2)^(2x)=81/16 `then x =
If 9x+2 = 240 + 9x, then x =
Find:-
`125^(1/3)`
Simplify:
`11^(1/2)/11^(1/4)`