Advertisements
Advertisements
प्रश्न
The value of \[\left\{ 2 - 3 (2 - 3 )^3 \right\}^3\] is
पर्याय
5
125
1/5
-125
उत्तर
We have to find the value of. `{2-3(2-3)^3}^3`So,
`{2-3 (2-3)^3}^3 = {2-3(-1)^3}^3`
` {2(-3 xx -1}^3`
`{2+3}^3`
`=5^3 = 125`
The value of `{2-3(2-3)^3}^3` is 125
Hence the correct choice is b.
APPEARS IN
संबंधित प्रश्न
If a = 3 and b = -2, find the values of :
aa + bb
Simplify:
`root5((32)^-3)`
Simplify:
`((25)^(3/2)xx(243)^(3/5))/((16)^(5/4)xx(8)^(4/3))`
Simplify:
`((5^-1xx7^2)/(5^2xx7^-4))^(7/2)xx((5^-2xx7^3)/(5^3xx7^-5))^(-5/2)`
Show that:
`[{x^(a(a-b))/x^(a(a+b))}div{x^(b(b-a))/x^(b(b+a))}]^(a+b)=1`
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
For any positive real number x, find the value of \[\left( \frac{x^a}{x^b} \right)^{a + b} \times \left( \frac{x^b}{x^c} \right)^{b + c} \times \left( \frac{x^c}{x^a} \right)^{c + a}\].
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
When simplified \[\left( - \frac{1}{27} \right)^{- 2/3}\] is
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is