Advertisements
Advertisements
प्रश्न
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
उत्तर
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y`
`rArr((a^-7b^14)/(a^14b^-28))div((a^3b^-5)/(a^-2b^3))=a^xb^y`
`rArr(a^(-7-14)b^(14+28))div(a^(3+2)b^(-5-3))=a^xb^y`
`rArr(a^-21b^42)div(a^5b^-8)=a^xb^y`
`rArra^(-21-5)b^(42+8)=a^xb^y`
`rArra^-26b^50=a^xb^y`
⇒ x = -26 and y = 50
APPEARS IN
संबंधित प्रश्न
Simplify the following
`((4xx10^7)(6xx10^-5))/(8xx10^4)`
Simplify the following
`((x^2y^2)/(a^2b^3))^n`
Prove that:
`((0.6)^0-(0.1)^-1)/((3/8)^-1(3/2)^3+((-1)/3)^-1)=(-3)/2`
Find the value of x in the following:
`5^(2x+3)=1`
Solve the following equation:
`4^(x-1)xx(0.5)^(3-2x)=(1/8)^x`
Show that:
`((a+1/b)^mxx(a-1/b)^n)/((b+1/a)^mxx(b-1/a)^n)=(a/b)^(m+n)`
State the product law of exponents.
If 24 × 42 =16x, then find the value of x.
For any positive real number x, write the value of \[\left\{ \left( x^a \right)^b \right\}^\frac{1}{ab} \left\{ \left( x^b \right)^c \right\}^\frac{1}{bc} \left\{ \left( x^c \right)^a \right\}^\frac{1}{ca}\]
The value of x − yx-y when x = 2 and y = −2 is