Advertisements
Advertisements
प्रश्न
If a and b are different positive primes such that
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y,` find x and y.
उत्तर
`((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y`
`rArr((a^-7b^14)/(a^14b^-28))div((a^3b^-5)/(a^-2b^3))=a^xb^y`
`rArr(a^(-7-14)b^(14+28))div(a^(3+2)b^(-5-3))=a^xb^y`
`rArr(a^-21b^42)div(a^5b^-8)=a^xb^y`
`rArra^(-21-5)b^(42+8)=a^xb^y`
`rArra^-26b^50=a^xb^y`
⇒ x = -26 and y = 50
APPEARS IN
संबंधित प्रश्न
Simplify the following
`(a^(3n-9))^6/(a^(2n-4))`
Prove that:
`sqrt(1/4)+(0.01)^(-1/2)-(27)^(2/3)=3/2`
If `3^(x+1)=9^(x-2),` find the value of `2^(1+x)`
Simplify:
`root(lm)(x^l/x^m)xxroot(mn)(x^m/x^n)xxroot(nl)(x^n/x^l)`
Write the value of \[\sqrt[3]{125 \times 27}\].
Write the value of \[\left\{ 5( 8^{1/3} + {27}^{1/3} )^3 \right\}^{1/4} . \]
If \[8^{x + 1}\] = 64 , what is the value of \[3^{2x + 1}\] ?
If \[\frac{2^{m + n}}{2^{n - m}} = 16\], \[\frac{3^p}{3^n} = 81\] and \[a = 2^{1/10}\],than \[\frac{a^{2m + n - p}}{( a^{m - 2n + 2p} )^{- 1}} =\]
The simplest rationalising factor of \[\sqrt[3]{500}\] is
Find:-
`16^(3/4)`