Advertisements
Advertisements
प्रश्न
If \[8^{x + 1}\] = 64 , what is the value of \[3^{2x + 1}\] ?
विकल्प
1
3
9
27
उत्तर
We have to find the value of `3^2x+1` provided `8^((x+1) = 64)`
So,
`2^(3(x+1)) = 64`
`2^(3x+3) = 2^6`
Equating the exponents we get
`3x + 3= 6 `
`3x= 6-3`
`3x=3`
`x= 3/3`
x - 1
By substitute in `3^(2x+1)`we get
`3^(2 xx 1 +1)`
` = 3^(2+1)`
`= 3^3`
`= 27`
The real value of `3^(2x+1)` is 27
APPEARS IN
संबंधित प्रश्न
Prove that:
`(x^a/x^b)^cxx(x^b/x^c)^axx(x^c/x^a)^b=1`
Simplify the following:
`(6(8)^(n+1)+16(2)^(3n-2))/(10(2)^(3n+1)-7(8)^n)`
Simplify:
`(0.001)^(1/3)`
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
If a and b are different positive primes such that
`(a+b)^-1(a^-1+b^-1)=a^xb^y,` find x + y + 2.
Simplify:
`(x^(a+b)/x^c)^(a-b)(x^(b+c)/x^a)^(b-c)(x^(c+a)/x^b)^(c-a)`
If a, b, c are positive real numbers, then \[\sqrt[5]{3125 a^{10} b^5 c^{10}}\] is equal to
The simplest rationalising factor of \[2\sqrt{5}-\]\[\sqrt{3}\] is
If \[\sqrt{13 - a\sqrt{10}} = \sqrt{8} + \sqrt{5}, \text { then a } =\]
Find:-
`16^(3/4)`