Advertisements
Advertisements
प्रश्न
Find:-
`16^(3/4)`
उत्तर
We can write the given expression as follows
⇒ `16^(3/4) = (2^4)^(3/4)`
On simplifying
⇒ `16^(3/4) = 2^(4 xx 3/4)`
⇒ `16^(3/4) = 2^3`
∴ `16^(3/4) = 8`
APPEARS IN
संबंधित प्रश्न
Prove that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
Prove that:
`(a^-1+b^-1)^-1=(ab)/(a+b)`
Solve the following equation for x:
`2^(5x+3)=8^(x+3)`
Prove that:
`sqrt(3xx5^-3)divroot3(3^-1)sqrt5xxroot6(3xx5^6)=3/5`
Prove that:
`(1/4)^-2-3xx8^(2/3)xx4^0+(9/16)^(-1/2)=16/3`
Find the value of x in the following:
`2^(5x)div2x=root5(2^20)`
Solve the following equation:
`8^(x+1)=16^(y+2)` and, `(1/2)^(3+x)=(1/4)^(3y)`
If x = 2 and y = 4, then \[\left( \frac{x}{y} \right)^{x - y} + \left( \frac{y}{x} \right)^{y - x} =\]
The value of \[\left\{ \left( 23 + 2^2 \right)^{2/3} + (140 - 19 )^{1/2} \right\}^2 ,\] is
The positive square root of \[7 + \sqrt{48}\] is