Advertisements
Advertisements
प्रश्न
The positive square root of \[7 + \sqrt{48}\] is
विकल्प
\[7 + 2\sqrt{3}\]
\[7 + \sqrt{3}\]
\[ \sqrt{3}+2\]
\[3 + \sqrt{2}\]
उत्तर
Given that:`7 +sqrt48`.To find square root of the given expression we need to rewrite the expression in the form `a^2 +b^2 +2ab = (a+b)^2`
`7 +sqrt48 = 3+4+2xx2xxsqrt3`
` = (sqrt3)^2 + (2)^2 +2 xx 2xx xxsqrt3`
`= (sqrt3 + 2 )^2`
Hence the square root of the given expression is `sqrt3+2`
APPEARS IN
संबंधित प्रश्न
Simplify:-
`2^(2/3). 2^(1/5)`
If a = 3 and b = -2, find the values of :
aa + bb
Prove that:
`1/(1+x^(a-b))+1/(1+x^(b-a))=1`
If 2x = 3y = 12z, show that `1/z=1/y+2/x`
Find the value of x in the following:
`(sqrt(3/5))^(x+1)=125/27`
If a and b are different positive primes such that
`(a+b)^-1(a^-1+b^-1)=a^xb^y,` find x + y + 2.
Write \[\left( \frac{1}{9} \right)^{- 1/2} \times (64 )^{- 1/3}\] as a rational number.
If x = \[\frac{2}{3 + \sqrt{7}}\],then (x−3)2 =
The value of \[\frac{\sqrt{48} + \sqrt{32}}{\sqrt{27} + \sqrt{18}}\] is
Simplify:
`(3/5)^4 (8/5)^-12 (32/5)^6`