Advertisements
Advertisements
प्रश्न
If \[\sqrt{2} = 1 . 414,\] then the value of \[\sqrt{6} - \sqrt{3}\] upto three places of decimal is
विकल्प
0.235
0.707
1.414
0.471
उत्तर
Given that`sqrt2 = 1.414` .We need to find `sqrt6 - sqrt3`.
We can factor out from the given expression, to get
`sqrt6 - sqrt3 = sqrt3(sqrt2 - 1)`.
Putting the value of`sqrt2`, we get
`sqrt3 (sqrt2-1) = sqrt3(1.4142 - 1)`
`=1.732xx0.4142`
`= 0.7174`
Hence the value of expression must closely resemble be`0.707.`
APPEARS IN
संबंधित प्रश्न
Solve the following equation for x:
`2^(3x-7)=256`
Given `4725=3^a5^b7^c,` find
(i) the integral values of a, b and c
(ii) the value of `2^-a3^b7^c`
Assuming that x, y, z are positive real numbers, simplify the following:
`(sqrt2/sqrt3)^5(6/7)^2`
Simplify:
`(0.001)^(1/3)`
Show that:
`{(x^(a-a^-1))^(1/(a-1))}^(a/(a+1))=x`
Solve the following equation:
`3^(x+1)=27xx3^4`
If `x = a^(m+n),` `y=a^(n+l)` and `z=a^(l+m),` prove that `x^my^nz^l=x^ny^lz^m`
State the quotient law of exponents.
If \[x = 7 + 4\sqrt{3}\] and xy =1, then \[\frac{1}{x^2} + \frac{1}{y^2} =\]
If \[x + \sqrt{15} = 4,\] then \[x + \frac{1}{x}\] =